

Outline

- XG Sciences
- xGnP[®] graphene nanoplatelets
- Silicon/ graphene Anode for Li-ion batteries
- Graphene sheet heat conductors
- Graphene-coated Al current collectors
- Conclusions

Company snapshot

- ✓ Privately held
 - Licensees & Corp Shareholders: Cabot (US), Hanwha Chemical (K), POSCO (K)
- ✓ Products:
 - xGnP® graphene platelets,
 - XG Leaf™ sheet,
 - Energy Materials, Inks & Coatings
- √ 600+ customers in 32 countries
 - Overseas distributors Korea, Japan, Taiwan, China and E.U. soon.
- ✓ Two locations in Lansing, Michigan
 - 80 Ton/year manufacturing (25K ft²)
 - Research & Development (14K ft²)
- ✓ Currently 40 Employees
 - 9 R&D (7 PhDs), 4 Engineering, 4 Management
- ✓ Spin-off from Michigan State University (2006)

Company mission:

***XG SCIENCES**THE MATERIAL DIFFERENCE

 Manufacture and sell graphene nanoplatelets as a bulk material in commercial quantities at economical costs

- Offer value-added products based on our materials and manufacturing process
 - Electrode materials for ultracapacitors and batteries
 - Films and "papers" for electronics applications
 - Coatings, inks and dispersions

- ✓ Licensees POSCO and Cabot identified XGS as the world leader
- ✓ Low cost manufacturing process
- ✓ 80+ ton capacity commissioned 2012
 - the largest capacity in the world

What is Graphene?

*XG SCIENCES THE MATERIAL DIFFERENCE

Graphene - A single layer of carbon atoms, or "an atomic-scale honeycomb lattice of carbon atoms."

Graphene Nanoplatelet - A particle consisting of multiple layers of graphene.

xGnP® Graphene Products

Three different grades for different applications:

- Grade H: 80 m²/g available in 5, 15 or 25 micron diameters
- Grade M: 150 m²/g available in 5, 15 or 25 micron diameters
- Grade C: small diameter particles available in 300, 500, 750 m²/g

THICKNESS

- 1. Mechanical strength
- 2. Handling
- 3. Electrical & thermal Properties
- 4. Loading wt%
- 5. Cost

SURFACE & EDGES

- 1. Electrical conductivity
- 2. Dispersion quality
- 3. Mechanical properties
- 4. Hydrophobic / hydrophilic

DIAMETER

- 1. Barrier Properties
- 2. Mechanical Properties
- 3. Cost

XGS's non-GO manufacturing process provides:

• lower cost, • higher strength, • better conductivity

xGnP® Graphene Applications

- Energy Storage
 - Electrodes for LIB or supercapacitors
- Thermal Management
 - Heat spreaders for smartphones and tablets, battery packs
- Printed Electronics
 - Low-cost replacement for silver
- Coatings
 - Functional barrier coatings, sensors
- Lubrication
 - Anti-wear additive
- Structural composites autos, aerospace, wind energy, construction
 - Thermoplastics like PP, PC, PE
 - Thermosets like epoxies, urethanes, acrylics

Energy storage materials

Lithium-ion batteries

- Graphene conductive additive
- High specific energy Silicon/graphene anode

Lead-carbon batteries

High charge rate/ cycle life anode

Supercapacitors

High specific energy paper electrode

Advanced

- Li-air battery cathode
- Li-S battery anode

xGnP® Conductive Additive

*XG SCIENCES THE MATERIAL DIFFERENCE

Cathode: LFP (1.2mA/cm²) on bare Al foil

Binder: PVDF

Electrolyte: 1M LiPF6 in EC/DMC (1:1)

Electrode formulation: LFP:Binder:CA = 90:5:5

Silicon/ graphene anode

AN-S material is produced using our existing low-cost graphene process <u>Unique aspects:</u>

- Low-cost Silicon precursor
- Graphite flake
- High-rate manufacturing process

Result:

- Aggregate of Silicon tightly coated by xGnP® graphene platelets
- Demonstrates excellent Li ion transport, electrical conductivity, chemical resistance, and mechanical strength with low BET surface area

US Department of Energy Selects XG Sciences to Develop High-Energy Battery Materials

Contract will accelerate commercialization of improved Lithium-ion batteries for electric vehicles

Lansing, Mich. (PRWEB) October 15, 2012 -- XG Sciences, Inc. announced today it has been selected by the U.S. Department of Energy (DOE) to develop high-energy Lithium-ion battery materials for use in extended range electric vehicle applications. XG Sciences' Silicon-graphene nanocomposite anode materials have demonstrated significant increases in energy storage capacity over traditional graphite and are manufactured with a commercially-proven, low-cost process using widely-available and economical starting materials.

AN-S Material design approach **XG SCIENCES**THE MATERIAL DIFFERENCE

Three key features incorporated to address the cycling stability & cost:

- 1. Graphene nanoplatelets built into the composite structure
 - Provide a large contact area with Si particles,
 - Maintain electric contact between electrode components,
 - Deliver flexibility to help accommodate Si volume change during cycling,

- 2. Graphene nanoplatelets are also used as a conductive additive
 - Flexible flake morphology provides better particle contact,
 - · Helps to maintain the mechanical integrity of the electrode.
- 3. Utilize an existing, low-cost industrial manufacturing process
 - XG Sciences is already using the process for bulk production of xGnP® graphene nanoplatelets.

AN-S Material description

☐ Particle size

Mean (um)	D10 (um)	D50 (um)	D90 (um)
1.0	0.5	0.8	1.9

☐ Tap density

ANS-101 : 0.88 g/cc vs Commercial nano Si : $\sim 0.10 \text{ g/cc}$

☐ Typical capacity: 2852mAh/g

■ Morphology

AN-S-101 Performance

Role of xGnP® Conductive Agent

AN-SH Performance

A	ctive loading (mg/cm²)	Electrode Density (g/cc)	1 st cycle eff. (%)	2 nd cycle eff. (%)	Test cond.
•	2.89	0.86	90.4	98.2	
A	2.44	0.78	89.3	98.1	CCCV/CC,
•	2.84	0.96	88.7	98	1C
•	2.44	0.96	87	97.9	

AN-SH Full Cell Performance

Graphene heat conductors

XG Leaf™ is a thin, <u>flexible</u>, <u>lightweight</u> sheet optimized for in-plane thermal conductivity.

Application:

Heat spreading and thermal management

- Battery packs*
- Portable Electronics
- LED Devices

Product Characteristics

- Thermal conductivity: 500 W/mK (in-plane)
- Adjustable thickness: 25-200 μm
- Adjustable mechanical properties
- 24-in x 24-in sheet

- Highly anisotropic
- Flexible and lightweight
- Self-standing
- Corrosion resistant

XG Leaf Thermal conductivity

Product	Description	Thermal Conductivity (W/mK)
XG Leaf™	High thermal conductivity 25 − 100+ μm Anisotropic − controlled heat transfer in 2D	
Natural Graphite	Limited thermal conductivity	150 – 400
HOPG (Highly Oriented Pyrolytic Graphite)	thly Oriented Pyrolytic High temperature batch process (> 2000°C) phite) Lower thermal conductivity	
Copper		
Aluminum	Much lower thermal conductivity Corrosive	< 237

Graphene-coated Al current collectors

Performance of LFP-based cells enhanced through:

- 1) Conductive xGnP® graphene interface,
- 2) Surface texture.

Discharge capacity (at 1 C) vs (a) cycle number and (b) C-rate for LFP cathodes with xGnP® graphene and carbon black coated Al current collectors

Conclusion

- xGnP[®] Graphene Bulk Material
 - LFP Cathode rate performance benefits from xGnP® conductive additive
- AN-S Silicon/ graphene anode
 - Capacity 600 mAh/g 2000 mAh/g
 - 1st cycle efficiency 85 90%
 - Stable cycling performance over 200+ cycles
- XG Leaf™ Graphene sheet heat conductors
 - Provide 500 W/mK (in-plane)/ 5 W/mK (through plane), non-corrosive and light weight
 - 24-in x 24-in sheet product
- Graphene-coated Al current collectors
 - Improve capacity, rate performance and adhesion of LFP cathodes

Materials enabling extending run-time in battery applications

